
Application
Development
in Node.js:
Text Upload
Lecture 4 (A)

FreeText
index.js --> server.js --> router.js (Advanced) --> requestHandler.js

FreeText
searchForm (4a) + submit form (4b)

§ Assignment one is due on Friday in Week 7.
§ You are strongly advised to complete Lab 3 and

Lab 4 before attempting a final prototype solution
for the assignment

§ However, you definitely should read the question a
few times after its release and start planning and
developing initial and intermediate prototypes

Assignment One

§ If you have not finished Lab 3 and Lab 4, do so as
soon as possible, then you will be equipped to start
serious working on the assignment

§ All students should submit their assignment on
LMS according to the instructions in the assignment
question sheet AND have their working application
residing under their home directory on
ceto.murdoch.edu.au

§ Late submission penalties will apply - refer to the
unit information and learning guide and the
assignment question sheet

Assignment One

4Lecture Objectives

n Relevance to unit objectives:
n Learning objective 1: Learning technical

Client/Server details
n Learning objective 2: Writing software
n Learning objective 3: Requirements for Internet

solutions

n Demonstrate the process of developing a Web
Server application with Node.js

5Recapitulation

§ In last week’s lectures, we developed the code
for a very basic HTTP server (in the file named
server.js), which can receive HTTP client
requests
§ We demonstrated how to encapsulate the server

functionality in a function and export that function,
so that other scripts can import and use the server

6Recapitulation
§ We also covered some preliminaries for our

application development (see lecture 3C)
§ We developed a router script (router.js) and

exported a route() method
§ We re-factored our server script (server.js) to

allow for the use of the route() method
§ We developed a start-up script (index.js) to start

and control the application
§Our two modules were imported into this script, which

allowed access to the exported methods

§ Let’s briefly review the above 3 scripts

7index.js Script

// import our exported modules
var server = require("./server");
var router = require("./router");

// call the startServer() function associated

// with the server object

// pass the route() function associated with

// the router object as its parameter

server.startServer(router.route);

8

var http = require("http"); // import http core modules
var url = require("url"); // import url core modules

function startServer(route){

http.createServer(function (request, response) {

var pathname = url.parse(request.url).pathname;

route(pathname);

response.writeHead(200, {"Content-Type": "text/plain"});

response.write("Hello World");

response.end();

}).listen(8888);

console.log("Server has started.");

}
exports.startServer = startServer;

server.js Script

9router.js Script

// create route function with pathname as parameter

function route(pathname) {

console.log("Routing a request for " + pathname);

}

// export route function

exports.route = route;

10

§ Remember, 'routing' means to handle requests
for different queries differently
§ Server and router functions are not the place to

actually handle requests (it is not their role)
§ Also, such an approach would not scale well once

an application becomes more complex
n Functions that have requests re-directed or

routed to them are called request handlers

Routing to Request Handlers

11

§ For our application, we want requests to a query
named /start to be routed to (or handled by)
a different function than requests to a query
named /upload

n So, let us create a module called
requestHandlers.js

n In this module we will add placeholder functions
(request handlers) for the two requests /start
and /upload

n We will then export these request handlers as
functions of the module

requestHandlers.js Script

12

function reqStart() {
console.log("Request handler 'start' was called.");

}
function reqUpload() {

console.log("Request handler 'upload' was called.");

}
exports.reqStart = reqStart;
exports.reqUpload = reqUpload;

requestHandlers.js Script

13

§ To re-direct the requests appropriately (and
have our request handlers respond
appropriately), we can pass a list of request
handlers as an object from our main file
(index.js) to the server (server.js), and then
from the server on to the router (router.js)

index -> server -> router

requestHandlers.js Script

14

§ The list of request handlers (in index.js) can
be implemented using an appropriate data
structure
§ We will use the associative array notation for

objects, as this allows us to use the query as a key
to its value; in our case that value will be one of the
request handler functions

§ This design approach demonstrates high
cohesion and low coupling, making the design
modular; it is thus more flexible and scalable

requestHandlers.js Script

15Re-Factor index.js
var server = require("./server");
var router = require("./router");
var requestHandlers = require("./requestHandlers");

// create ‘handle’ object literal
var handle = {};

// using the associative array notation, each array
// index is an object property which points to an
// appropriate request handler
handle["/"] = requestHandlers.reqStart;
handle["/start"] = requestHandlers.reqStart;
handle["/upload"] = requestHandlers.reqUpload;

// pass handle object (and route function) to server
server.startServer(router.route, handle);

16

n We have imported the requestHandlers module
n We then create an empty object handle
n Using the associative array notation, we create

property:value pairs for each of our request
handlers
n These map different queries (as keys) to the

appropriate request handler
n We then pass the handle object into
startServer() as its second argument

Re-Factor index.js

17

var http = require("http"); // import http core modules
var url = require("url"); // import url core modules

function startServer(route, handle){
http.createServer(function (request, response) {

var pathname = url.parse(request.url).pathname;
console.log("Request for "+pathname+" received.");
route(pathname, handle);
response.writeHead(200, {"Content-Type": "text/plain"});
response.write("Hello World");
response.end();

}).listen(8888);
console.log("Server has started.");

}
exports.startServer = startServer;

Re-Factor server.js

18Re-Factor router.js

function route(pathname, handle) {
console.log("About to route a request for: " + pathname);
// note access via associative array notation
// if the path points to a function i.e., request handler
if (typeof handle[pathname] === 'function') {

handle[pathname](); // call the appropriate function
} else {

console.log("No handler found for: " + pathname);
}

}
exports.route = route;

19router.js Script

§ Firstly, the route function accepts the second
parameter handle

§ Then we need to check if a request handler for
the given query (i.e. pathname) exists

§ This is done using the typeof and ===
operators:
§ Recall the typeof operator returns the data type of

its operand

20

§ The === operator performs identically to == except
it does not perform type conversion
§ So typeof must match exactly the function data

type
§ Thus, handle[pathname] should point to one of

our request handler functions
§ If it does point to a function, the if statement will

be true and the appropriate function is called
§ If it does not point to a function, the else clause

prints an error message to console.log

router.js Script

21

§ Thus, we can access our request handler
functions from our handle object, just as we
would access a value in an associative array;
via its key (or property)

§ This is done via the succinct expression
handle[pathname]();
§ Note handle[pathname] will resolve to a request

handler, and the parenthesis designates a function
call

router.js Script

22router.js Script
§ So, depending on what pathname is in the

request, the keys/properties could be:
handle['/'](); OR
handle['/start'](); OR
handle['/upload']();

§ Of course, we would not see the above keys in
the square brackets because they are the
possible values for the pathname

§ However, the pathname would point to the
appropriate function (request handler)

23Test Scripts: No Path

§ To test, run index.js in an ssh terminal, and in
another ssh terminal run curl on command line
node index.js
curl http://localhost:8888/

§ Output should be like this:
Request for / received.
About to route a request for /
Request handler 'start' was called.

24

curl http://localhost:8888/start

§ Output should be like this:
Request for /start received.
About to route a request for /start
Request handler 'start' was called.

§ NOTE: in each of the previous two tests, the
reqStart request handler was called

Test Scripts: /start

25

curl http://localhost:8888/upload

§ Output should be like this:
Request for /upload received.
About to route a request for /upload
Request handler 'upload' was called.

Test Scripts: /upload

26

§ Note you can also run the previous tests in a
browser by entering the three different URLs
§ The 'Hello World' browser response upon

requesting the previous URLs comes from the
anonymous function in our server.js file

§ The other outputs using console.log are
displayed in the ssh terminal that started the server

Test Scripts

27Responding Request Handlers

§ Remember, 'handling requests' means
'answering requests' as well as 'receiving
requests'

§ Thus, we need to enable our request handlers
to speak with the client/browser

§ At the moment, our server's anonymous
callback function does this

28

§ A straight-forward (and rather simplistic)
approach is to have the request handlers
‘return the content’ they want to display to the
client, and send this response data from the
anonymous function back to the user: i.e.,

request handler -> router -> server

Responding Request Handlers

29

§ Of course, the route.js and server.js code
would need to be re-factored to deal with the
returned content

§ However, we could run into problems – the
server's anonymous callback function could
become too large and complex if it needs to
handle many different types of requests.

Responding Request Handlers

30

§ So instead of bringing the content to the server,
a better approach is to bring the server to the
content
§ That is, pass the response object (from our

server's anonymous callback function) through the
router into the request handlers

§ The handlers will then be able to use this
object's functions to respond to requests
themselves

Responding Request Handlers

31Re-Factor server.js

var http = require("http"); // import http core modules
var url = require("url"); // import url core modules

function startServer(route, handle){
http.createServer(function (request, response) {
var pathname = url.parse(request.url).pathname;
route(pathname, handle, response);
// response functions removed from here!!

}).listen(8888);
console.log("Server has started on port 8888");

}

exports.startServer = startServer;

32server.js Script

§ The response object is passed as the third
argument to the route() function

§ The response function calls (writeHead(),
write(), and end()), from within the server’s
anonymous function, have been removed
because we now expect the route() function
and the respective request handlers to take
care of their own response output

33Re-Factor router.js
function route(pathname, handle, response) {

console.log("About to route a request for: " + pathname);

if (typeof handle[pathname] === 'function') {

handle[pathname](response); // pass response argument

} else {

console.log("No request handler found: " + pathname);

response.writeHead(404, {"Content-Type": "text/plain"});

response.write("Resource not found!");

response.end();

}
}
exports.route = route;

34router.js Script

§ The response object is passed as the third
parameter to the route() function, and also as
an argument to the re-directing handler object

§ The response error function calls (originally
from the server’s anonymous function), have
been added to the else clause of the if
statement in the route() method
§ This takes care of the error output

35Useful Request Handler Script
§ We will now make use of a core module to

demonstrate the functionality in our two request
handlers

§ We will use the exec() function (which belongs to the
child_process core module) to execute a
command such as ls (which lists the current working
directory)
§ Note: ls is finished rather quickly (most of time), meaning it

would not overly delay the handling of the next request even
if the server's anonymous callback functions are run
synchronously

36

var exec = require("child_process").exec;

function reqStart(response) {

console.log("Request handler 'start' was called.");

exec("ls -lah",

function (error, stdout, stderr) {

response.writeHead(200, {"Content-Type": "text/plain"});

response.write(stdout); //send the output to client

response.end();

});

}

• For details of exec method, see
https://nodejs.org/api/child_process.html#child_processexeccommand-options-

callback

requestHandler.js Script

37

function reqUpload(response) {

console.log("Request handler 'upload' was called.");

response.writeHead(200, {"Content-Type": "text/plain"});

response.write("Hello Upload\n");

response.end();

}

exports.reqStart = reqStart;

exports.reqUpload = reqUpload;

requestHandler.js Script

38

§ Here, the handler function reqStart accept
the response parameter, and makes use of
any return value (from the exec call) in order to
respond to the request directly
§ That is, the response outputs are not executed in

the router or the server
§ The /start handler responds from within the
exec()'s anonymous callback, and the
/upload handler still simply replies with "Hello
Upload"

requestHandler.js Script

39Testing Scripts:
Fast Request

§ This test will make HTTP requests to
http://localhost:8888/
OR
http://localhost:8888/start

which respond immediately (a fast request),
and requests to
http://localhost:8888/upload

will be answered almost immediately as well

40

// start app in one ssh shell

node index.js

// use curl as a client in another ssh shell

curl http://localhost:8888/
// client output to console
total 36K
drwx------. 2 macca macca 4.0K Mar 4 10:21 .
drwx------. 7 macca macca 4.0K Feb 25 13:28 ..
-rw-r--r--. 1 macca macca 313 Feb 25 15:52 index.js
-rw-r--r--. 1 macca macca 2.5K Mar 4 10:14 requestHandlers.js
-rw-r--r--. 1 macca macca 401 Mar 4 10:21 router.js
-rw-r--r--. 1 macca macca 411 Mar 4 10:13 server.js

Testing Scripts: No Path

41

// with server still running

// use curl as a client in another ssh shell

curl http://localhost:8888/start

// client output to console

total 36K

drwx------. 2 macca macca 4.0K Mar 4 10:21 .

drwx------. 7 macca macca 4.0K Feb 25 13:28 ..

-rw-r--r--. 1 macca macca 313 Feb 25 15:52 index.js

-rw-r--r--. 1 macca macca 2.5K Mar 4 10:14 requestHandlers.js

-rw-r--r--. 1 macca macca 401 Mar 4 10:21 router.js

-rw-r--r--. 1 macca macca 411 Mar 4 10:13 server.js

Testing Scripts: /start

42

// with server still running

// use curl as a client in another ssh shell

curl http://localhost:8888/upload

// client output to console

Hello Upload

Testing Scripts: /upload

43

§ We can also demonstrate that this design
approach will work with a slow request

§ This can be done with a call to exec() again,
but calling a slow command called "find"
which takes a long time to finish.

§ We want to demonstrate that after this slow
request, the next request can still be
processed immediately without waiting for the
slow request to finish.

Responding Request Handlers:
Slow Request

44

§ Note:
§The command find usually takes a long time to

finish.
§The server's anonymous callback function is called

each time a new request arrives
§In Node.js, these multiple calls to the callback

function runs concurrently with each other
(asynchronously)

§Therefore, a slow command such as find would
not delay the handling of the next request.

Responding Request Handlers:
Blocking Process

45

var exec = require("child_process").exec;

function reqStart(response) {

console.log("Request handler 'start' was called.");

exec("find /", { timeout: 10000, maxBuffer: 20000*1024 },

function (error, stdout, stderr) {

response.writeHead(200,{"Content-Type":"text/plain"});

response.write(stdout);

response.end();

});

}

requestHandler.js Script

46

function reqUpload(response) {

console.log("Request handler 'upload' was called.");

response.writeHead(200, {"Content-Type": "text/plain"});

response.write("Hello Upload\n");

response.end();

}

exports.reqStart = reqStart;

exports.reqUpload = reqUpload;

requestHandler.js Script

47

§ This test will make HTTP requests to
http://localhost:8888/
OR

http://localhost:8888/start

which may take 10 seconds or more to finish, but
requests to
http://localhost:8888/upload

will be answered immediately, even if /start is still
executing

Testing Scripts:
Asynchronous Processing

48

§ Run the index.js, and in another terminal,
run on command line:
curl http://localhost:8888/start

§ Immediately after running the previous
command, in the third terminal, run on
command line:
curl http://localhost:8888/upload
Hello Upload

Testing Scripts

49

§ The output for /upload should display
immediately, even though the /start process
is still running

§ When the /start process finishes, the output
should be something like the format listed on
the next slide
§ Obviously, the actual file names etc., will be those in

your file system

Testing Scripts

50

§ The server, router, and request handlers are in
place, and tested using system functions for
both quick and slow requests

§ So now content can be added to the site which
allows users to interact and choose a file, and
view the returned file (from the server) in the
browser

§ As an example, let us look at how to handle
incoming POST requests

Providing Content

51

§ Firstly, the server will send an HTML form to the
client in response to the /start request.

§ The form uses HTTP POST method and
contains a textarea to get input from the
user. When the submit button is clicked, the
form data will be sent to the server as /upload
request.

§ As the HTML code is served by the /start
request handler, requestHandlers.js
needs re-factoring

Handling POST Requests

52

function reqStart(response) {
console.log("Request handler 'start' was called.");
var body = '<html>'+
'<head>'+
'<meta http-equiv="Content-Type" content="text/html; '+
'charset=UTF-8" />'+

'</head>'+
'<body>'+
'<form action="/upload" method="post">'+
'<textarea name="text" rows="20" cols="60"></textarea>'+
'<input type="submit" value="Submit text" />'+
'</form>'+

'</body>'+
'</html>';
response.writeHead(200, {"Content-Type": "text/html"});
response.write(body);
response.end();

}

Providing Content:
Re-Factor reqStart()

53

§ Things to note:
1. The path in the url '/start' triggers the reqStart

request handler
2. The textarea form is sent back to the client

(browser) where input from the user will be
obtained

3. Once the text is entered by the user and the submit
button pressed, the form action calls '/upload'
which triggers the reqUpload request handler
(which at this point just returns 'Hello Upload')

Providing Content

54

§ To test this very simple form, enter the request
in a browser
http://localhost:8888/start

§ Enter some text in the textarea, and click the
submit button
§ Note that the server responds with ‘Hello Upload’,

but does nothing with the entered text
§ That is fine for small sized resources which do

not block

Providing Content

55

§ However, POST requests can be potentially
very large. The data in the POST request may
be sent to the server via a sequence of chunks.

§ Each time a chunk arrived in the server, the
event data is triggered. These chunks need to
be handled by a callback in response to each
data event.

§ Finally, event end is triggered indicating that all
chunks in the POST request have been
received by the server.

Providing Content

56

§ This can be implemented by adding event
listeners to the request object that is passed
to the onRequest() function (or the
anonymous callback function) whenever an
HTTP request is received
§ Recall last week we used response.on(); this week we

will use request.addListner()
request.addListener('data', function(chunk) {

// called when a new chunk of data was received

});

request.addListener('end', function() {

// called when final chunk of data received

});

Providing Content

57

§ The POST data listeners can be handled by the
server (for now), which can then pass the final
data on to the router and the request handlers
§ A decision can then be made about what to do with

the data received
§ i.e., it is feasible to suggest that an HTTP server's

job is to give the application all the data (from a
request) it needs to do its job

Providing Content

58

§ The listeners for the data and end events can
be placed in the server script file (for now)

§ Here all POST data chunks can be
accumulated in the data callback listener

§ The call to the router can happen upon
receiving the 'end' event

§ The accumulated data can then be directed to
the router, which in turn passes it on to the
request handlers

Providing Content

59

var http = require("http");

var url = require("url");

function startServer(route, handle) {

function onRequest(request, response) {

var pathname = url.parse(request.url).pathname;

console.log("Request for " + pathname + " received.");

request.setEncoding('utf8');

// declare variable to accumulate incoming data

var postData = "";

Re-Factor server.js

60

request.addListener('data', function(dataChunk) {

// accumulate data here

postData += dataChunk;

// only display for testing purposes

console.log("Received POST chunk'"+dataChunk+"'.");
});
request.addListener('end', function() {

route(pathname, handle, response, postData);
});

}
http.createServer(onRequest).listen(8888);

console.log("Server has started.");
}
exports.startServer = startServer;

Re-Factor server.js

61

§ Things to note:
§ The received data is expected in UTF-8 encoding
§ An event listener for the data event accumulates

into the postData variable whenever a new chunk
of POST data arrives

§ The call to the router has been moved into the end
event listener, ensuring that it is only called when all
POST data has been received

§ postData is passed into the route() method, as
it is needed in the request handlers

Re-Factor server.js

62

function route(pathname, handle, response, postData) {

console.log("About to route a request for " + pathname);

if (typeof handle[pathname] === 'function') {

handle[pathname](response, postData);

} else {

console.log("No request handler found for " pathname);

response.writeHead(404, {"Content-Type":"text/plain"});

response.write("Resource not found!");

response.end();

}

}

exports.route = route;

Re-Factor router.js

63

§ Things to note:
§ The postData is passed into the route()

function as the fourth parameter
§ It is subsequently passed as a second parameter

in the re-direction to the request handlers:

handle[pathname](response, postData);

Re-Factor router.js

64

function reqStart(response, postData) {

.. Same form code as previous versions ..

.. postData passed in but not used ..

}

function reqUpload(response, postData) {

console.log("Request handler 'upload' was called.");

response.writeHead(200, {"Content-Type": "text/plain"});

response.write("You've sent: " + postData);

response.end();

}

exports.reqStart = reqStart;
exports.reqUpload = reqUpload;

Re-Factor requestHandlers.js

65

§ Things to note:
§ The postData is passed in to both the

reqStart() and reqUpload() functions as the
second parameter

§ It is subsequently used in the write function in the
reqUpload() function

§ It is not used in the reqStart() function, but is
passed for consistency
§ It is possible it may be required in the future

Re-Factor RequestHandlers.js

66A Better Solution
n As we have observed in Week 3, the server script is

not really the best place in an application to handle
data received from a form or other source

n A better solution would be to perform the tasks of
accumulating the input form data in request handlers

n In our application, these tasks could be done in the
reqUpload() function
n Obviously, to do this we would need to re-factor

requestHandlers.js and other scripts

67A Better Solution
n In the tutorial for Week 4, you will be asked to re-factor

the entire application to achieve this better solution
n Think carefully about how to pass the incoming data

from the server to the router, then to the request
handler
n Existing parameters between scripts will need to be changed

to enable this
n In particular, the request object will be needed to access

the addListner event handlers
n Also, postData will no longer be necessary

68Read the Scripts

n Study the scripts and analyze the operations
line-by-line

n Please make sure you read and understand ALL
of the code discussed in these lecture notes
n You will need this understanding to complete the

work for Lab 4 and Assignment 1
n Check with JavaScript and Node.js for any

commands that you are unsure about

69Acknowledgement

n Kissling, M., The Node Beginner Book: A
comprehensive Node.js tutorial. 10/10/2015

Application
Development
in Node.js:
Image Upload
Lecture 4 (B)

2Lecture Objectives

n Relevance to unit objectives:
n Learning objective 1: Learning technical

Client/Server details
n Learning objective 2: Writing software
n Learning objective 3: Requirements for Internet

solutions
n Demonstrate the process of developing a Web

Server application to upload image files

3Recapitulation
§ In the previous lecture, we developed an

application that:
§ Was designed with a modular approach

§ This made development easier, by re-factoring to cater for
progressive changes

§ Provided a script to start the application
§ Consisted of a server, a router, and request handlers
§ Handled requests to post text data to a

browser/client

4Get Form Data
§ The plan now is to show how to extract the user

input data from an HTML form on the server.
§ This includes getting the uploaded files from the

client
§ We will also show how to serve an image file

from the server in a browser
§ We will need to use a number of an external

Node.js modules, including formidable, fs,
util and os

5Install formidable Module
§ The module formidable is not a core

module, therefore we need to install it on our
computer. Type on command line:
npm install formidable

§ To see the version of formidable module
installed on your computer:
npm view formidable version

- The current version should be 2.0.1 (March 2022)

§ To import the module into an application, type
the following into the script that uses it:
var formidable = require("formidable");

6Usage: formidable

§ The request object in the server contains the
form data, such as text box values, selection of
the radio button and selected file.

§ Although these user input data are already
transported to the server side, accessing them
from the request object is not an easy task.

§ Fortunately, formidable provides a parse
method allowing us to easily gain access to
these user input data, including the uploaded
files.

7Usage: formidable
§ To get the user input from a POST form, we

need to create a new IncomingForm object,
which contains the parse method.
var formidable = require('formidable');

var form = new formidable.IncomingForm();

§ The IncomingForm can then be used to parse
the request object to obtain the field and
file that were submitted through the form.
form.parse(request, function(error, field, file){

// access input data from field

// access file information from file

}

8Usage: formidable
§ Once the request is parsed, the callback is

called with the input data in field and file
information in file:
- field contains the data from all input elements in

the form (except file), in the form of a list of
name:value pairs.

- file contains the information about all uploaded
files, including the filepath on the server and
originalFilename for each uploaded file.

9Example: Get Data From
an HTML formFile start.html:

<!DOCTYPE html>
<html>
<head>

<title> A HTML Form </title>
</head>
<body>

<p>Please submit your assignment:</p>
<form action="/upload" enctype="multipart/form-data" method="POST">

Student Number <input type="number" name="studentNumber" value="12345678">

Student Name <input type="text" name="studentName" value="Jane Doe">

Unit <input type="radio" name="unit" value="ICT582">ICT582

<input type="radio" name="unit" value="iCT286">ICT286
<input type="radio" name="unit" value="iCT375" checked="checked" >ICT375
<input type="radio" name="unit" value="iCT374">ICT376

Assignment <input type="file" name="assignment" multiple="multiple">

<input type="submit" value="Upload your assignment" />

</form>
</body>
</html>

10Access Values of Input Elements
§ The HTML form contains input elements for

student number, student name, the unit, and
the assignment file to submit.

§ The data from most input elements (not
including file) are available in the field object:
{ name : value, name : value, . . . }

§ For example, if the student number entered by
the user is 12345678, this value can be
accessed using the input element's name
attribute studentNumber:
field.studentNumber

11Access Information About
an Uploaded File

§ The information about a file is accessible from
file object using the name attribute of the file
element.

§ For example, in the previous form, the name
attribute for the file input element is
assignment. Its information is available from
file.assignment object.
• file.assignment.filepath

Ø File.assignment.path on Darwin

• File.assignment.originalFilename
Ø File.assignment.name on Darwin

12Inspect Object Details
§ You can view the details of an object using

inspect method from util module.
§ For example to see the details of the objects

field and file:
form.parse(request, function(error, field, file){

console.log(util.inspect({field: field, file: file});

. . . .

}

13Request Handler: reqStart
// file: handlers/start.js
var fs = require('fs');

function reqStart(request, response) {
fs.readFile('./handlers/start.html', 'utf8', (err, data) => {

if (err) {
console.error(err);
response.writeHead(404, {'Content-Type' : 'text/plain'});
response.write('Error reading file "start.html"');
response.end();

} else {
response.writeHead(200, {'Content-Type' : 'text/html'});
response.write(data);
response.end();

}
});

}

exports.reqStart = reqStart;

§ Note both the script start.js and the html file
start.html are stored under subdirectory handlers.

14Request Handler: reqStart

15Request Handler: reqUpload
// file: handlers/upload.js
var formidable = require('formidable');
var util = require('util');
var fs = require('fs');
var os = require('os');

function reqUpload(request, response) {
if (request.method == 'POST') {

var form = new formidable.IncomingForm();
form.parse(request, function(error, field, file) {

//console.log(util.inspect({field : field, file: file}));
var oldpath = os.type() == 'Darwin'

? file.assignment.path: file.assignment.filepath;
var newFilename = os.type() == 'Darwin'

? file.assignment.name: file.assignment.originalFilepath;
var newpath = "./assignments/" + field.studentNumber + "_" + newFilename;
fs.rename(oldpath, newpath,

(err) => { if (err) { console.log("error in fs.rename"); }
});
response.writeHead(200, {'Content-Type': 'text/html'});
response.write("<p>Thank you for submission </p>");
response.end();

});
} else {

response.writeHead(200, {'Content-Type' : 'text/plain'});
response.write('Hello, upload\n');
response.end();

}
}

exports.reqUpload = reqUpload;

16Request Handler: reqUpload
§ The program gets the information of an uploaded file

using the value of name attribute in the file input
element, which is assignment in the form.

§ On the server, the uploaded file is temporarily stored in
file.assignment.filepath. We constructs a
new path by combining the directory path where the
file will be moved to (./assignments/), the student
number, and the original file name from the client:
newpath = "./assignments/"

+ field.studentNumber

+ "_"

+ file.assignment.originalFilename

17Request Handler: reqUpload
§ The program then move the file from the

temporary location to the application specific
location:
fs.rename(oldpath, newpath,(err) => {

if (err) {
console.log("error in fs.rename"); }

});

§ Note there are some difference between the
formidable on Windows and MacOS (Darwin).
o file.assignment.filepath (Windows)

o file.assignment.path (Darwin)

o File.assignment.originalFilename (Windows)

o File.assignment.name (Darwin)

18

§ We obviously need to serve the content of a
file, such as an image, to the client

§ We can use Node.js' file system core module
(fs) for this purpose

§ So, let us add another request handler (to our
application) for the URL query (/show), which
will display the contents of an image file (say
test.png) that resides in the directory
./images of our server

Serving an Image File

19

var fs = require('fs');

function reqShow(request, response) {
response.writeHead(200, {'Content-Type': 'image/png'});

var readStream = fs.createReadStream("./images/test.png");
readStream.on('open', function() {

readStream.pipe(response);
});
readStream.on('erro', function() {

response.writeHead(404, {'Content-Type' : 'text/plain'});
response.write("File 'test.png' not found\n");
response.end();

});
}

exports.reqShow = reqShow;

Request Handler reqShow

20

var server = require('./server.js');
var router = require('./router.js');

// install request handlers
var handle = {};
handle['/'] = require('./handlers/start.js').reqStart;
handle['/start'] = require('./handlers/start.js').reqSart;
handle['/upload'] = require('./handlers/upload.js').reqUpload;
handle['/show'] = require('./handlers/show.js').reqShow;

server.startServer(router.route, handle);

§ Note, in a real application, there may be many request
handlers. Placing all handlers in one file can make the file
unmanageable. It makes sense by placing each handler in a
separate script file and place all handlers in the same sub-
directory.

§ In this application, all handlers, start.js, upload.js and
show.js are stored under subdirectory handlers.

Re-Factor index.js

21Test reqShow

n By restarting the server and entering the
following URL in the browser, the image file at
./test.png should be displayed

http://localhost:8888/show

§ Obviously, you will need an image called
test.png in the subdirectory ./images

22Read the Scripts

n Study the scripts and analyze the operations
line-by-line

n Please make sure you read and understand ALL
of the code discussed in these lecture notes
n You will need this understanding to complete the

work for Lab 4 and Assignment 1
n Check with JavaScript and Node.js for any

commands that you are unsure about

23

Acknowledgement

n Kiessling, M., The Node Beginner Book: A
comprehensive Node.js tutorial. 10/10/2015

